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Abstract

Model checking is an automated technique that can be
used to determine whether a system satisfies certain re-
quired properties. To address the “state explosion” prob-
lem associated with this technique, we propose to integrate
assume-guarantee verification at different phases of system
development. During design, developers build abstract be-
havioral models of the system components and use them to
establish key properties of the system. To increase the scal-
ability of model checking at this level, we have developed
techniques that automatically decompose the verification
task by generating component assumptions for the prop-
erties to hold. The design-level artifacts are subsequently
used to guide the implementation of the system, but also
to enable more efficient reasoning at the source code-level.
In particular, we propose to use design-level assumptions
to similarly decompose the verification of the actual system
implementation. We demonstrate our approach on a sig-
nificant NASA application, where design-level models were
used to identify and correct a safety property violation, and
design-level assumptions allowed us to check successfully
that the property was preserved by the implementation.

1. Introduction

Our work is motivated by an ongoing project at NASA
Ames Research Center on the application of automated ver-
ification techniques to autonomous software. Autonomous
systems involve complex concurrent behaviors for reacting
to unpredicted environmental stimuli without human inter-
vention. Extensive verification is a pre-requisite for the de-
ployment of missions that involve autonomy.

Given some formal description of a system and of a re-
�
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quired property, model checking automatically determines
whether the property is satisfied by the system. The lim-
itation of the approach, commonly known as the “state-
explosion” problem, is the exponential relation of the num-
ber of states in the system under analysis to the number of
components of which the state is made [28]. Model check-
ing therefore does not scale, in general, to systems of real-
istic size.

The aim of our work is to increase the applicability and
scalability of model checking by:

1. applying it at different phases of software develop-
ment, and

2. using compositional (i.e. divide and conquer) verifi-
cation techniques that decompose the verification of a
software system into manageable subparts.

We believe that the verification of a safety critical system
should be addressed as early as during its design, and should
should go hand in hand with later phases of software de-
velopment. Our experience working closely with the de-
velopers of the control software for an experimental Mars
Rover has been that several integration issues can be de-
tected during system design. At that level, verification of the
system is typically more manageable and errors are easier
and cheaper to fix since the system has not yet been imple-
mented. Although system verification at the design level is
undoubtedly important, there is little guarantee that the im-
plemented system indeed satisfies the properties established
at design time. We therefore need to provide a means of es-
tablishing that system implementations preserve the proper-
ties that have been demonstrated at the design level.

During design, our work supports the verification of La-
beled Transition Systems (LTSs) against safety properties
expressed in terms of finite-state automata. LTSs are com-
municating finite-state machines that can be used to de-
scribe the behavioral interfaces of software or hardware
components. Safety properties describe the legal (and il-
legal) sequences of actions that a system can perform.

In previous work, we developed novel techniques for
performing automated assume-guarantee verification at the



design level [9, 16]. Assume-guarantee reasoning was orig-
inally aimed at enabling the stepwise development of con-
current processes, but has more recently been used to de-
compose the verification of large and complex systems. It
is in the latter context that we use it in our work.

Assume-guarantee reasoning first checks whether a com-
ponent

�
guarantees a property � , when it is part of a sys-

tem that satisfies an assumption � . Intuitively, � charac-
terizes all contexts in which the component is expected to
operate correctly. To complete the proof, it must also be
shown that the remaining components in the system (

�
’s

environment), satisfy � . In contrast with previous assume-
guarantee frameworks [8, 19, 25, 30], our techniques do not
require human input in defining assumptions, but rather
generate assumptions automatically, thereby increasing the
accessibility of this kind of reasoning.

The focus of the present work is to develop a methodol-
ogy for using design artifacts to leverage the verification of
the actual system implementation. To this aim, we propose
to use the assumptions that are automatically generated dur-
ing design-level verification to perform assume-guarantee
reasoning at the implementation level. In general, we be-
lieve that design-level assumptions can be used both dur-
ing component development as an adjunct to traditional unit
testing approaches, and during program validation, to en-
able more efficient reasoning and to model non-software
components, including the actual environment of a reactive
system. For the latter, it may be the case that critical system
properties can only be demonstrated under specific environ-
mental assumptions that appear reasonable to the developer,
but cannot be discharged because the environment is un-
known (e.g., autonomous systems). These assumptions can
then be used to monitor, during deployment, the behavior of
the environment, and trigger recovery actions when this be-
havior falls outside the envelope defined by the assumption.

The work presented in this paper contributes:

1. a methodology for using the results of the modular
analysis at the design level to improve the performance
of verification tools at the code level;

2. a program instrumentation technique for supporting
assume-guarantee reasoning of Java programs using
the Java PathFinder (JPF) model checker developed at
NASA Ames [32]; and

3. a significant case study demonstrating the applicability
of our approach to a real NASA software system.

The case study has been performed in the context of an on-
going collaboration with the developers of the control soft-
ware for an experimental Mars Rover. More specifically,
we have used our techniques to verify several versions of
the software both during its design, and during its imple-
mentation, often using the results of our work to influence
the design decisions of the developers. In this paper we will
present how design-level models were used to identify and

correct a safety property violation, and how design-level as-
sumptions allowed us to check successfully that the prop-
erty was preserved by the system implementation.

Note that, even though our research to-date has fo-
cused on checking implementations using software model-
checking tools, we are aware of the fact that for complex
software, even components may be too complicated to an-
alyze exhaustively. In such cases, we intend to sacrifice
exhaustiveness for the sake of scalability by using lighter-
weight analysis techniques such as stateless model check-
ing [17] or runtime analysis [20].

The remainder of the paper is organized as follows. We
first provide some background on our design-level verifica-
tion techniques in Section 2, followed by a description of
the methodology that we propose in Section 3. Section 4
presents our approach to model checking source code in an
assume-guarantee style. Section 5 describes the experience
and results obtained by the application of our methodology
to a NASA system that was the focus of our case study.
Finally, Section 6 presents related work and Section 7 con-
cludes the paper.

2. Background: Assume-guarantee verifica-
tion at the design level

In this section we give background on assume-guarantee
reasoning and we describe the automated assume-guarantee
frameworks that we have developed for reasoning about
software systems at the design level.

2.1. Assume-guarantee reasoning

In the assume-guarantee paradigm a formula is a triple� ��� � � ��� , where
�

is a component, � is a property, and
� is an assumption about

�
’s environment. The formula

is true if whenever
�

is part of a system satisfying � , then
the system must also guarantee � .

Consider for simplicity a system that is made up of com-
ponents

���
and

�
	
. To check that the system satisfies a

property � without composing
� �

with
� 	

, one can ap-
ply assume-guarantee reasoning as follows. The simplest
assume-guarantee proof rule shows that if

� ��� � � � ��� and�������� � � 	 � ��� hold, then
�������� � � ��� � 	 � ��� is true.

This proof strategy can also be expressed as an inference
rule:

(Premise 1)
� ��� ��� � ���

(Premise 2)
�������� � �
	 � ����������� � � ��� � 	 � ���

Note that for the use of this rule to be justified, the as-
sumption must be more abstract than

� 	
, but still reflect�
	

’s behavior. Additionally, an appropriate assumption for
the rule needs to be strong enough for

���
to satisfy � .
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Figure 1. Iterative framework for assume-
guarantee reasoning

2.2. Automated assume-guarantee frameworks

Several frameworks have been proposed [8, 19, 25, 30] to
support assume-guarantee reasoning. However, their practi-
cal impact has been limited because they require non-trivial
human input in defining assumptions. In previous work
[9, 16] we developed novel frameworks to perform assume-
guarantee reasoning in a fully automatic fashion. The work
was done in the context of finite labeled transition systems
with blocking communication and safety properties.

In [16], we present an approach to synthesizing the as-
sumption that a component needs to make about its environ-
ment for a given property to hold. The assumption produced
is the weakest, that is, it restricts the environment no more
and no less than is necessary for the component to satisfy
the property. The automatic generation of weakest assump-
tions has direct application to the assume-guarantee proof;
it removes the burden of specifying assumptions manually
thus automating this type of reasoning.

The algorithm presented in [16] does not compute partial
results, meaning no assumption is obtained if the computa-
tion runs out of memory, which may happen if the state-
space of the component is too large. We address this prob-
lem in [9], where we present a novel framework for per-
forming assume-guarantee reasoning using the above rule
in an incremental and fully automatic fashion. This frame-
work is illustated in Figure 1.

At each iteration, a learning algorithm is used to build
approximate assumptions ��� , based on querying the sys-
tem and on the results of the previous iteration. The
two premises of the compositional rule are then checked.
Premise 1 is checked to determine whether

���
guarantees

� in environments that satisfy ��� . If the result is false, it
means that this assumption is too weak, and therefore needs
to be strengthened with the help of the counterexample pro-
duced by checking premise 1. If premise 1 holds, premise 2
is checked to discharge � � on

� 	
. If premise 2 holds, then

the compositional rule guarantees that � holds in
� � � � 	

.
If it doesn’t hold, further analysis is required to identify
whether � is indeed violated in

� � � �
	
or whether ��� is
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Figure 2. Verification at design and code level

stronger than necessary, in which case it needs to be weak-
ened. The new assumption may of course be too weak, and
therefore the entire process must be repeated. This process
is guaranteed to terminate; in fact, it converges to an as-
sumption that is necessary and sufficient for the property to
hold in the specific system.

Recently, we have extended our frameworks to handle
circular rules and more than two components. We have
implemented the frameworks in the LTSA model-checking
tool [26] and have applied them to the verification of several
design models of NASA software systems.

3. Methodology

This section describes our methodology for using the ar-
tifacts of the design-level analysis in order to decompose
the verification of the implementation of a software system.

To address the scalability issues associated with software
model checking, our approach, illustrated in Figure 2, in-
tegrates assume-guarantee reasoning of concurrent systems
at the design and at the implementation level. At the de-
sign level, the architecture of a system is described in terms
of components and their behavioral interfaces modeled as
LTSs. Design level models are intended to capture the de-
sign intentions of system developers, and allow early verifi-
cation of key integration properties.

For example, consider a system that consists of two de-
sign level components

� �
and

� 	
, and a global safety

property � (describing the sequence of events that the sys-
tem is allowed to produce, or equivalently the bad behav-
iors that the system must avoid). To check in a more scal-
able way that the composition

� � � �
	
satisfies � , we

use the assume-guarantee frameworks described in the pre-
vious section. We expect that, with the feedback obtained
by our verification tools, the developers of the system will
correct their models until the property is achieved at the de-
sign level. At that stage, our frameworks will have automat-
ically generated an assumption � that is strong enough for���

to satisfy � but weak enough to be discharged by
��	

(i.e.
� ��� ��� � ��� and

�������� � � 	 � ��� both hold).



To then establish that the property is preserved by the
actual implementation, our approach uses the automati-
cally generated assumption � , to perform assume-guarantee
reasoning at the source code level. The implementation
is decomposed as specified by the architecture at the de-
sign level (i.e. components

� �
and

� 	
implementing

� �
and

� 	
, respectively; see Figure 2), and we establish that�������� � ��� � � 	 � ��� holds by checking that

� ��� ��� � ��� and�������� � � 	 � ��� . If the two premises are true then the cor-
rectness of the assume-guarantee rule guarantees that the
property is preserved by the implementation. If any one of
the two premises does not hold, then the counterexample(s)
obtained expose some incompatibility between the models
and the implementations, and are used to guide the devel-
opers in correcting the implementation, the model, or both.

Alternatively, one may wish to check preservation of
properties by checking directly that each implemented com-
ponent refines its model. In our experience, for well de-
signed systems, the interfaces between components are
small, and the assumptions that we generate are much
smaller than the component models. Moreover, the con-
trollability information that we use to derive these assump-
tions, and the fact that we take the properties into account in
building them, typically allow us to achieve further reduc-
tion than abstraction techniques that would merely simplify
models based on component interfaces [16]

The software architecture of a system may not always
provide the best decomposition for verification [7]. How-
ever, we currently focus on this line of research because
one of our target applications is the Mission Data Sys-
tems architecture (MDS) [12].MDS allows adaptations to
be constructed by configuring instantiations of components
with an ADL. We are interested in enriching critical com-
ponents of the MDS system with models describing their
abstract behavioral interfaces, and relating the analysis of
these models with analysis of the resulting implementation.

4. Assume-guarantee analysis of software

In this section, we describe the main challenges in ex-
tending the Java Pathfinder software model checker to per-
form assume-guarantee reasoning, with assumptions and
properties expressed as finite-state machines. Although
we make our presentation in the context of Java programs,
our approach extends to other programming languages and
model checkers.

4.1. Java PathFinder

For checking Java implementations, we use Java
PathFinder (JPF) [32]. JPF is an explicit-state model
checker that analyzes Java bytecode classes directly for
deadlocks and assertion violations. JPF is built around

a special-purpose Java Virtual Machine (JVM) that al-
lows Java programs to be analyzed. JPF supports depth-
first, breadth-first as well as heuristic search strategies to
guide the model checker’s search in cases where the state-
explosion problem is too severe [18].

In addition to the standard language features of
Java, JPF uses a special class Verify that al-
lows users to annotate their programs so as 1) to
express non-deterministic choice with methods Ver-
ify.random(n) and Verify.randomBool() and 2)
to truncate the search of the state-space with method Ver-
ify.ignoreIf(condition), when the condition
becomes true. Methods Verify.beginAtomic() and
Verify.endAtomic() respectively indicate the start
and end of a block of code that the model cheker should
treat as one atomic statement and not interleave its execu-
tion with any other threads.

4.2. Mapping and instrumentation

We instrument Java programs to perform assume-
gurantee reasoning using Java PathFinder. In our frame-
work, both assumptions and properties are expressed as de-
terministic finite-state machines. For example, consider a
program that opens and closes files. The assumption illus-
trated in Figure 3 expresses the fact that the environment
will always open a file before closing it, and will always
perform these actions in alternation. Any different behav-
ior with respect to these actions leads the assumption to the
ignore state, which reflects the fact that such behavior
will never be exercised in the context of the environment
that the assumption represents. On the other hand, the prop-
erty illustrated in Figure 4 expresses the fact that the system
is required to always open a file before closing it, and to
always perform these actions in alternation. Any behavior
that does not conform to this pattern is violating, and will
be trapped in the error state.

At the source code level, assumptions and properties will
be used to examine the behavior of the system and check
whether behaviors that are not ignored by the assumption
may be trapped by the property, meaning that the property
is violated under the specific assumption. A necessary step
in our approach is therefore a mapping between actions that
appear in the design-level assumptions and properties, and
events that occur in the software. For simplicity, we are
assuming that actions in our design models correspond in
the software either to method calls or to the locking and
unlocking of objects.

The software must then be instrumented so that each
event that appears in the mapping gets trapped, and is used
in examining its effects on the state of the assumption and
property. Presently, this instrumentation is done by hand,
but we are considering the use of automated tools such as
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public static void event() �
1) Verify.beginAtomic()
2) String threadName = Thread.currentThread().getName();
3) Throwable throwable = new Throwable();
4) StackTraceElement st = (throwable.getStackTrace())[1];
5) String methodName = st.getMethodName();
6) String className = st.getClassName();
7) int eventID = getEvent(className, methodName, threadName);
8) AG Assumption.event(eventID);
9) AG Property.event(eventID);
10) Verify.endAtomic();�

Figure 5. Method event of class AG Monitor

[20]. We have to date experimented with the use of iCon-
tract [23], but unfortunately encountered bugs in the soft-
ware which could not be fixed because the tool is no longer
being supported.

Our instrumentation adds at each point where an event
occurs, a method call AG Monitor.event(), which
traps the event and calls methods of the assumption and the
property. This method, shown in Figure 5, uses Java reflec-
tion to determine the name of the thread making the method
call (line 2), the method being called (lines 3-5), and the
class that contains the method (line 6). These three pieces
of information are used as a key to look up the correspond-
ing event from the design level model (line 7). Then, this
event is passed on to the assumption (line 8) and to the prop-
erty (line 9). The entire block is enclosed by JPF directives
(lines 1 and 10) which instruct it to treat the method body
as an atomic step and to interleave no other threads with the
execution of this method.

If more information is needed to determine the mapping
between the Java program and the events from the design-
level model, then the event method can be extended to
allow parameters to be passed that contain this extra infor-
mation. This was necessary in our case study to obtain in-
formation about parameters being passed into method calls,
parameters being returned from method calls, and to trap
locks and unlocks of objects.

Properties and assumptions are implemented by classes
AG Assumption and AG Property. An excerpt of the
AG Assumption class is shown in Figure 6. This class
has a static integer field that records the current state of the
assumption automaton (line 1) and a transition table that

public class AG Assumption �
1) private static int state = 0;
2) private static int[][] trans;

...
public static void event(int e) �

3) state = trans[state][e];
4) Verify.ignoreIf(state < 0);���

Figure 6. Class AG Assumption (excerpt)

stores the transitions (line 2). The ignore state of the as-
sumption is represented by a state with an ID less than zero.
The method event advances the assumption by looking up
the next state in the transition table (line 3). If the state is
less than 0, this represents that the current execution does
not satisfy the assumption and that JPF should not continue
exploring this path (line 4). The current path does not need
to be further explored, since we are only interested in prop-
erty violations that occur under the given assumption.

The AG Property class is similar, except a state with
an ID less than zero represents the error state and line 4
is replaced by assert(state >= 0). This instructs
JPF to detect a property violation and produce a counter-
example trace if the error state of the property is reached.

4.3. Environment modeling

The process-algebra based models that are supported by
our design-level tools can be checked in a straightforward
way both in isolation and in combination with other mod-
els. In contrast to these, software model checkers such as
JPF analyze executable programs, and as such, expect com-



plete programs as input. Therefore, to analyze system com-
ponents in isolation in an assume-guarantee style, one must
provide for each component an appropriate abstract envi-
ronment that will enable its analysis. In essence, such envi-
ronments provide stubs for the methods called by the com-
ponent that are implemented by other components, or drive
the execution of a component by calling methods that the
component provides to its environment.

In our experiments, we used universal environments, that
may invoke any provided operation in a component’s inter-
face or refuse any required operations in any order. Tools
that build such environments for Java programs are pre-
sented in [31].

4.4. Analysis of implementations

For checking implementations, we instrument the source
code to perform assume-guarantee reasoning (as described
above) and we use off-the shelf software model checking
tools (i.e. Java PathFinder for the analysis of Java pro-
grams). Note that, for complex software, even components
may be too large to analyze exhaustively; abstraction and
slicing techniques (e.g. [10]) could be used to make analy-
sis of software components more tractable. Alternatevely,
our approach could sacrifice exhaustiveness for the sake of
scalability by using lighter-weight techniques such as state-
less model checking [17] or runtime analysis [20].

5. Case study

Our case study is the planetary rover controller K9, and
in particular its executive subsystem, developed at NASA
Ames Research Center. It has been performed in the con-
text of an ongoing collaboration with the developers of the
Rover, where verification and development go hand-in-hand
to increase the quality of the design and implementation of
the system.

In this section we describe how we used our assume-
guarantee frameworks to check a key property on the de-
sign models of the executive and to automatically generate
an appropriate assumption. We show how this assumption
was used to perform assume-guarantee model checking of
source code with JPF and how this compares to the mono-
lithic (i.e. non-compositional) analysis of the executive’s
Java implementation.

5.1. System description

The executive receives flexible plans from a planner,
which it executes according to the plan language seman-
tics. A plan is a hierarchical structure of actions that the
Rover must perform. Traditionally, plans are deterministic
sequences of actions. However, increased Rover autonomy

savedWakeUpStruct

conditionSetChanged

Internal

DbMonitor
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ActionExecution

ExecTimerChecker

ExecCondChecker

Rover
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Planner

Database
(state of system)

Figure 7. The Executive of the K9 Mars Rover

requires added flexibility. The plan language therefore al-
lows for branching based on state or temporal conditions
that need to be checked, and also for flexibility with respect
to the starting time of an action.

The executive needs to monitor the state of the Rover and
of the environment to take appropriate paths in a flexible
plan that it executes. It has been implemented as a multi-
threaded system (see Figure 7), made up of a main coordi-
nating component named Executive, components for moni-
toring the state conditions ExecCondChecker, and temporal
conditions ExecTimerChecker - each further decomposed
into two threads - and finally an ActionExecution thread that
is responsible for issuing the commands to the Rover. The
executive has been implemented as 25K lines of C++ code,
10K of which is the main control code, and the rest defines
data structures that are needed for the communication with
the actual Rover. The software makes use of the POSIX
thread library, and synchronization between threads is per-
formed through mutexes and condition variables.

5.2. Design-level analysis

The developers provided their design documents that de-
scribed the synchronization between components in an ad-
hoc flowchart-style notation. These were in essence ex-
tended control-flow graphs of the threads, and focused on
such things as method calls, (un-)locking mutexes and wait-
for and signaling of condition variables. They looked very
much like LTSs, which allowed us to translate them in
a straightforward and systematic, albeit manual, way into
about 700 lines of FSP code. FSP is the input language of
the LTSA tool, in which we have implemented our assume-
guarantee frameworks described in Section 2. To achieve
a close correspondence between the FSP code and the de-
sign diagrams, we first built models for mutexes, condition
variables, and their associated methods. These models pro-
vided an infrastructure on top of which the actual threads of
the system were modeled.

Model checking of the design models uncovered a num-
ber of synchronization problems such as deadlocks and data
races. Moreover, the models were used for quick experi-
mentation with alternative solutions to existing defects. The



study that we present here focuses on the following property
that was formulated by the developer.

Property. For the variable savedWakeUpStruct of the Ex-
ecCondChecker that is shared with the Executive (see Fig-
ure 7), the property states that: “if the Executive thread
reads the value of the variable, then the ExecCondChecker
should not read this value until the Executive clears it first”.
The property was represented in terms of two states corre-
sponding to the shared variable being cleared or not cleared,
and an error state as discussed in the previous section.

Analysis. The developer expected the property to be satis-
fied by the ExecCondChecker and the Executive irrespec-
tive of the behavior of other threads. Our analysis was
therefore performed on these threads together with the mu-
texes they use, since mutexes are the way in which syn-
chronization issues are resolved in the system. We applied
assume-guarantee reasoning as supported by our techniques
described in Section 2, where assumptions were generated
for the ExecCondChecker (module

� �
) and discharged by

the Executive (module
� 	

).
The weakest assumption consists of 6 states and descrip-

tion an environment where “whenever the Executive reads
the savedWakeUpStruct variable after acquiring mutex exec,
it should hold on to the mutex until it clears the variable”.
This assumption could not be discharged on the Executive.
The counter-example obtained describes the following sce-
nario: if the Executive reads savedWakeUpStruct and de-
cides that the variable points to an irrelevant condition, it
performs a wait on a condition variable associated with the
exec lock. The wait causes the exec lock to be released au-
tomatically. The problem was fixed by adding to the Ex-
ecutive a statement that clears savedWakeUpStruct before
checking whether the condition contained there is relevant.

5.3. Implementation analysis

Set-up. We analyzed a Java translation of this code, which
was used in a case-study described in [5]. The translation
was done selectively and it focused on the core functionality
of the executive (the rest of the components being stubbed).
The translated Java version is approximately 7.2 Kloc and
it contains all the components of Figure 7, where each com-
ponent (except the Database) executes as a separate thread.

In our experiment, we concentrated on a subsystem con-
sisting of the Executive and ExecCondChecker threads (all
the other threads were not started), and we analyzed this
system for a very simple input plan, that consists of one
node and no time conditions (which are not relevant for the
analysis of the subsystem). JPF was able explore exhaus-
tively the state-space of this subsystem (any other config-
uration, i.e. starting more threads or more complex input
plans would force JPF to run out of memory). This sub-

system is small enough to be manageble by JPF, and thus
to provide a baseline for comparison with modular verifi-
cation, but it still contains enough details about the inter-
actions between the Executive and the ExecCondChecker
threads, which were the focus of the design-level analysis.

To evaluate the merits of assume-guarantee verification
using the automatically generated design-level assumption,
we broke up the system in two components

���
and

� 	
repre-

senting the ExecCondChecker and the Executive threads re-
spectively, and we checked the two premises of the assume-
guarantee rule.

Environment modeling. As was mentioned in Section 4, to
check components

���
and

� 	
in isolation, we need to identify

the interface between them so we can generate environment
models to make them closed.

To check premise 1, we built a universal environment to
drive

� �
(the ExecCondChecker), that invokes any sequence

of operations in the class ExecCondChecker’s interface
(see Figure 8).

This driver loops forever generating events (line 1). It
begins by making a non-deterministic choice of whether
or not to acquire the lock on the Executive object (line 2).
If it acquires the lock (line 3), we then use a specialized
form the of AG Monitor.event method to trap the lock
event (line 4). The universal environment then makes a non-
deterministic choice (line 5). Depending on the results of
this choice, zero or more events are generated while the lock
is held (lines 6-10). These events include method calls that
access savedWakeUpStruct which is shared between the two
threads (i.e. condChecker.deleteSavedWakeup()
and condChecker.getSavedWakeup()) and meth-
ods that add and remove conditions to and from a list struc-
ture in ExecCondChecker. Once the universal environ-
ment is done generating events, it generates an event sigal-
ing that the lock is to be released (line 11) and then leaves
the synchronized block. If the choice was made to not ac-
quire the lock on line 2, then the universal environment gen-
erates a single event (lines 12-16).

To maintain a finite number of elements in the
list of conditions, we added an annotation forcing
JPF to backtrack if more than one call to cond-
Checker.addConditionCheck() is made; this is a
reasonable assumption, since we considered a configuration
where the input plan has only one node (and only one con-
dition could be added for it).

To check premise 2, we built stubs that implement the
methods invoked in component

���
by

� 	
. Some care needed

to be taken when doing this. For example, the getSaved-
Wakeup() method can either return null or an object. To
simulate this, the method stub would non-deterministically
choose which to return.

Analysis. We used JPF and the property ( � ) and assump-



class Executive � ...
public void run() � ...

1) while(true) �
2) if(Verify.randomBool()) �
3) synchronized(exec) �
4) AG Monitor.event("Executive", "lock");
5) while(Verify.randomBool()) �
6) switch(Verify.random(4)) �
7) case 0: condChecker.deleteSavedWakeup(); break;
8) case 1: condChecker.getSavedWakeup(); break;
9) case 2: condChecker.addConditionCheck(id,...); break;
10) case 3: condChecker.removeConditionCheck(id,...); break;� �
11) AG Monitor.event("Executive", "unlock");

�
�
else �

12) switch(Verify.random(4)) �
13) case 0: condChecker.deleteSavedWakeup(); break;
14) case 1: condChecker.getSavedWakeup(); break;
15) case 2: condChecker.addConditionCheck(id,...); break;
16) case 3: condChecker.removeConditionCheck(id,...); break;� � ��� �

Figure 8. Universal driver

tion ( � ) that were used in the design level analysis to check
the property monolithically (i.e., on the whole subsystem)
and modularly (i.e. we checked premise 1:

� ��� ��� � ��� and
premise 2:

�������� � � 	 � ��� ). In both cases, we discovered the
same error that was discovered at the design level. After we
corrected the error, we repeated the checks. While the prop-
erty was shown to hold on the whole sub-system, we were
surprised to find out that premise 1 would not hold, i.e. as-
sumption � was not strong enough to make the property
hold. After looking back at the design model, we noticed
that the system for which we had generated the assumption
also encoded a different assumption, according to which
all accesses to savedWakeupStruct by the Executive thread
would be protected by the exec lock. This assumption was
encoded explicitely at the indications of the developer who
gave us the initial models (the assumption was subsequently
discharged on

� 	
). Using this new assumption, we checked

that the property holds (i.e. we checked that
� � � ����� � � � ���

holds and we discharged both assumptions on
��	

).

Results and discussion. Our experiments were run on a
Intel Xeon 2.2 Ghz machine with 4Gb of memory (although
a single process could only access 2Gb of memory). This
system is running RedHat Linux version 8.0 with Sun’s Java
version 1.4.2-01. We used JPF version 2.4 using the -no-
verify-print, -no-deadlocks, and -verbose flags.

Table 1 gives the results of the experiment. The System
column describes the system being analyzed. The States
and Transitions columns report the number of states and
transitions explored by JPF. The Memory and Time report
the amount of memory needed and the time taken to per-

form the analysis.
The Whole System rows give the results for checking

the property monolithically. The version marked bug cor-
responds to the original system in which the property does
not hold while the other version has had the bug fixed so
that the property does hold.

The Premise 1 lines report the results of verifying
premise 1. As was mentioned previously, while performing
the verification, we discovered that an additional assump-
tion, � � was needed to complete the verification. We looked
at two ways of incorporating this assumption into the anal-
ysis. The first uses the universal environment shown in Fig-
ure 8 and uses an automaton representation of � � , as shown
in the AG Assumption class in Figure 6. The second uses
a modified universal assumption that directly encodes � � .
This is done by replacing lines 12-16 of the universal as-
sumption with code that makes a choice only between the
two events on lines 15 and 16. The bug that caused a vio-
lation of the property in the monolithic analysis was in the
Executive, not the ExecConditionChecker, so these analyses
were not affected by the presence or absence of the bug.

The Premise 2 lines report the results for checking
premise 2, in which the assumptions used in checking
Premise 1 need to be discharged. We discharged the as-
sumptions � and � � separately, on the system containing
the bug and on the system in which the bug is fixed.

From Table 1, we can see that the compositional ap-
proach to verification does reduce the number of states that
JPF needs to explore and the amount of memory necessary
for the analysis in the version of the Rover that does not
contain the bug. The results from checking Premise 1 show



Table 1. Experimental results
System States Transitions Memory (Mb) Time

Whole System 183,132 425,641 952.85 12m, 24s
Whole System (bug) 255 338 23.07 10s
Premise 1, � � as automaton 60,830 134,177 315.98 6m, 55s
Premise 1, � � encoded 53,215 117,756 255.96 4m, 49s
Premise 2, Assumption � 13,884 20,601 118.97 1m, 16s
Premise 2, Assumption � (bug) 145 144 44.49 20s
Premise 2, Assumption � � 13,884 20,601 109.58 1m, 7s
Premise 2, Assumption � � (bug) 13,884 20,601 121.37 49s

that the encoding of the assumption can affect the perfor-
mance of the model checker. We plan to investigate this in
the future.

This case study demonstrates that the use of design level
assumptions has merits in improving the performance of
source code model checking. Our experimental work is of
course preliminary, and we are planning to carry out larger
case studies to validate our approach.

6. Related work

It is well known that software defects are less costly the
earlier they are removed in the development process. To-
wards this end, a number of researchers have worked on
applying model checking to artifacts that appear throughout
the software life-cycle, such as requirements [3, 21], archi-
tectures and designs [1, 27, 29] and source code [4, 6, 10, 13,
32]. Our work integrates the analysis performed at different
levels, using assume-guarantee reasoning.

Assume-guarantee reasoning is based on the observation
that large systems are being build from components and that
this composition can be leveraged to improve the perfor-
mance of analysis techniques. Formal techniques for sup-
port of component-based design are gaining prominence,
see for example [11]. To reason formally about components
in isolation, some form of assumption (either implicit or ex-
plicit) about the interaction with, or interference from, the
environment has to be made. Even though we have sound
and complete reasoning systems for assume-guarantee rea-
soning, see for example [8, 19, 25, 30], it is always a mental
challenge to obtain the most appropriate assumption.

It is even more of a challenge to find automated tech-
niques to support this style of reasoning. The thread modu-
lar reasoning underlying the Calvin tool [14] is one start in
this direction. The Mocha toolkit [2] provides support for
modular verification of components with requirement spec-
ifications based on the Alternating-time Temporal logic.

More recently, Henzinger et al. [22] have presented a
framework for thread-modular abstraction refinement, in
which assumptions and guarantees are both refined in an

iterative fashion. The framework applies to programs that
communicate through shared variables, and, unlike our ap-
proach where assumptions are controllers of the component
that is being analyzed, the assumptions in [22] are abstrac-
tions of the environment components. The work of Flana-
gan and Qadeer also focuses on a shared-memory commu-
nication model [15], but does not address notions of ab-
stractions as is done in [22] . Jeffords and Heitmeyer use
an invariant generation tool to generate invariants for com-
ponents that can be used to complete an assume-guarantee
proof [24]. While their proof rules are sound and complete,
their invariant generation algorithm is not guaranteed to
produce invariants that will complete an assume-guarantee
proof even if such invariants exist.

7. Conclusions

We presented an approach for integrating assume-
guarantee verification at different phases of system devel-
opment, to address the scalability issues associated with the
verification of complex software systems. Our approach
uses the results of modular analysis at the design level to
improve the performance of verification at the code level.
We gave a program instrumentation technique for support-
ing assume-guarantee reasoning of Java programs using the
Java PathFinder model checker; our approach easily extends
to other programmming languages and model checkers. We
also presented a significant case study demonstrating the
applicability of our approach to a realistic NASA software
system. To evaluate how useful our approach is in prac-
tice, we are planning its extensive application to other real
systems. However, our early experiments provide strong
evidence in favor of this line of research.

In the future, we plan to look at ways to better auto-
mate the process of code annotation and environment gen-
eration. Additionally, we plan to investigate lighter-weight
techniques such as stateless model checking or run-time
verification in the context of our methodology. Finally, we
plan to evaluate the use of other design-level artifacts to im-
prove the performance of verification at source-code level.
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